Regularized Discriminant Analysis and Its Application in Microarrays

نویسندگان

  • YAQIAN GUO
  • TREVOR HASTIE
  • ROBERT TIBSHIRANI
چکیده

In this paper, we introduce a modified version of linear discriminant analysis, called “shrunken centroids regularized discriminant analysis” (SCRDA). This method generalizes the idea of “nearest shrunken centroids” (NSC) [Tibshirani et al., 2003] into the classical discriminant analysis. The SCRDA method is specially designed for classification problems in high dimension low sample size situations, for example, microarray data. Through both simulated data and real life data, it is shown that this method performs very well in multivariate classification problems, often outperforms the PAM method and can be as competitive as the SVM classifiers. It is also suitable for feature elimination purpose and can be used as gene selection method. The open source R package for SCRDA is available and will be added to the R libraries in the near future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized linear discriminant analysis and its application in microarrays.

In this paper, we introduce a modified version of linear discriminant analysis, called the "shrunken centroids regularized discriminant analysis" (SCRDA). This method generalizes the idea of the "nearest shrunken centroids" (NSC) (Tibshirani and others, 2003) into the classical discriminant analysis. The SCRDA method is specially designed for classification problems in high dimension low sample...

متن کامل

Algorithms for Regularized Linear Discriminant Analysis

This paper is focused on regularized versions of classification analysis and their computation for highdimensional data. A variety of regularized classification methods has been proposed and we critically discuss their computational aspects. We formulate several new algorithms for regularized linear discriminant analysis, which exploits a regularized covariance matrix estimator towards a regula...

متن کامل

Regularized Discriminant Analysis, Ridge Regression and Beyond

Fisher linear discriminant analysis (FDA) and its kernel extension—kernel discriminant analysis (KDA)—are well known methods that consider dimensionality reduction and classification jointly. While widely deployed in practical problems, there are still unresolved issues surrounding their efficient implementation and their relationship with least mean squares procedures. In this paper we address...

متن کامل

Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data

BACKGROUND More studies based on gene expression data have been reported in great detail, however, one major challenge for the methodologists is the choice of classification methods. The main purpose of this research was to compare the performance of linear discriminant analysis (LDA) and its modification methods for the classification of cancer based on gene expression data. METHODS The clas...

متن کامل

Regularized Discriminant Analysis and Its Application in Microarray

In this paper, we introduce a family of some modified versions of linear discriminant analysis, called “shrunken centroids regularized discriminant analysis” (SCRDA). These methods generalize the idea of the nearest shrunken centroids of Prediction Analysis of Microarray (PAM) into the classical discriminant analysis. These SCRDA methods are specially designed for classification problems in hig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005